A Model for Protonation of Dinitrogen by Nitrogenase: Protonation of Coordinated Dinitrogen on Tungsten with Hydrosulfido-Bridged Dinuclear Complexes¹

Yoshiaki Nishibayashi, Shotaro Iwai, and Masanobu Hidai*

Department of Chemistry and Biotechnology Graduate School of Engineering, The University of Tokyo Hongo, Tokyo 113-8656, Japan

Received April 13, 1998

The mechanism for biological nitrogen fixation remains unclear although the X-ray structural model has recently been reported for the FeMo-cofactor of FeMo nitrogenase.² It has been made clear that the site where dinitrogen (N₂) is activated and reduced is an Fe/Mo sulfido cluster.² However, we are still uncertain about which metal is responsible for binding N₂.²⁻⁴ Several groups claimed that protonation of the activated N₂ proceeds with the aid of the bridging hydrosulfido ligands in the cluster.^{2d,3c-g,4} In Dance's model,^{3c-g} the bridging sulfido ligands mediate proton transfer to the coordinated N₂ bound to the Fe₄ face of the Fe/ Mo sulfido cluster via μ -SH intermediates as shown in Chart 1.

Up until now, many mononuclear and polynuclear N_2 complexes of transition metals have been prepared,⁵ some of which liberate NH₃ and/or hydrazine (NH₂NH₂) by protonolysis with inorganic acids such as H₂SO₄. Typically, molybdenum and tungsten N₂ complexes of the type M(N₂)₂(PMe₂Ph)₄ (M = Mo, W) produce NH₃ and/or NH₂NH₂ in good yields by treatment with inorganic acids.^{5a,6} Previously, the reactions of organic thiols or H₂S with those N₂ complexes were investigated, where H₂ gas was evolved and no N–H bond formation was observed.^{7,8} This indicates that organic thiols and H₂S attack the electron-rich metal center in the N₂ complexes in place of the coordinated N₂. Very recently, we have reported the formation of NH₃ by ruthenium-

(1) Preparation and Properties of Molybdenum and Tungsten Dinitrogen Complexes. 56. Part 55: Ishino, H.; Ishii, Y.; Hidai, M. Chem. Lett. **1998**, 677-678.

(2) (a) Kim, J.; Rees, D. C. Science 1992, 257, 1677–1682. (b) Kim, J.; Rees, D. C. Nature 1992, 360, 553–560. (c) Chan, M. K.; Kim, J.; Rees, D. J. Science 1993, 260, 792–794. (d) Rees, D. C.; Chan, M. K.; Kim, J. Adv. Inorg. Chem. 1993, 40, 89–119. (e) Kim, J.; Rees, D. C. Biochemistry 1994, 33, 389–397. (f) Eady, R. R.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1994, 2739–2747. (g) Howard, J. B.; Rees, D. C. Chem. Rev. 1996, 96, 2965–2982. (h) Burgess, B. K.; Lowe, D. J. Chem. Rev. 1996, 96, 2983–3011.

(3) Recent theoretical studies, see: (a) Deng, H.; Hoffmann, R. Angew.
 Chem. Int. Ed. Engl. 1993, 32, 1062–1065. (b) Stavrev, K. K.; Zerner, M.
 C. Chem. Eur. J. 1996, 2, 83–87. (c) Dance, I. G. Aust. J. Chem. 1994, 47, 979–990. (d) Dance, I. G. Transition Metal Sulfur Chemistry; Stiefel, E. I., Matsumoto, K., Eds.; ACS Symposium Series 653; American Chemical Society: Washington, DC, 1996. (e) Dance, I. Chem. Commun. 1997, 165–166. (f) Dance, I. Chem. Commun. 1998, 523–530. (g) Zhong, S.-J.; Liu, C.-W. Polyhedron 1997, 16, 653–661.

(4) (a) Sellmann, D.; Sutter, J. Acc. Chem. Res. **1997**, 30, 460–469 and references therein. (b) Richards, R. L. Coord. Chem. Rev. **1996**, 154, 83–97 and references therein.

(5) (a) Hidai, M.; Mizobe, Y. Chem. Rev. **1995**, 95, 1115–1133 and references therein. (b) Laplaza, C. E.; Johnson, M. J. A.; Peters, J. C.; Odom, A. L.; Kim, E.; Cummins, C. C.; George, G. N.; Pickering, I. J. J. Am. Chem. Soc. **1996**, 118, 8623–8638. (c) Fryzuk, M. D.; Love, J. B.; Rettig, S. J.; Young, V. G. Science **1997**, 275, 1445–1447. (d) Shan, H.; Yang, Y.; James, A. J.; Sharp, P. R. Science **1997**, 275, 1460–1462. (e) Zanotti-Gerosa, A.; Solari, E.; Giannini, L.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. J. Am. Chem. Soc. **1998**, 120, 437–438.

(6) (a) Chatt, J.; Pearman, A. J.; Richards, R. L. J. Chem. Soc., Dalton Trans. 1977, 1852–1860. (b) Takahashi, T.; Mizobe, Y.; Sato, M.; Uchida, Y.; Hidai, M. J. Am. Chem. Soc. 1980, 102, 7461–7467.

(7) Organic thiol: (a) Dilworth, J. R.; Richards, R. L.; Dahlstorm, P.; Hutchinson, J.; Kumar, S.; Zubieta, J. J. Chem. Soc., Dalton Trans. **1983**, 1489–1493. (b) Povey, D. C.; Richards, R. L. J. Chem. Soc., Dalton Trans. **1984**, 2585–2587. (c) Hughes, D. L.; Lazarowych, N. J.; Maguire, M. J.; Morris, R. H.; Richards, R. L. J. Chem. Soc., Dalton Trans. **1995**, 5–15 and references therein.

(8) H₂S: Kuwata, S.; Mizobe, Y.; Hidai, M. J. Chem. Soc., Dalton Trans. **1997**, 1753–1758.

Chart 1

assisted protonation of N_2 on W atom with H_2 under mild conditions.⁹ As an extension of this multimetallic approach for nitrogen fixation, the reactivity of dinuclear complexes containing bridging hydrosulfido ligands toward coordinated N_2 was investigated and a series of hydrosulfido-bridged dinuclear compounds of ruthenium, iridium, and rhodium were prepared by our group, which served as versatile precursors for synthesis of various polynuclear sulfido clusters.¹⁰ Interestingly, the proton on the bridging sulfur has been found to be transferred to the ligating N_2 to form NH₃. Preliminary results about these reactions will be described here.

Treatment of $cis-[W(N_2)_2(PMe_2Ph)_4]$ (1) with 10 equiv of $[Cp*Ir(\mu-SH)_3IrCp*]Cl^{10c}$ (2; $Cp* = \eta^5-C_5Me_5$) under nitrogen atmosphere in dichloroethane-benzene at 55 °C for 24 h afforded NH₃ in 78% total yield based on the W atom (Scheme 1). Free NH3 in 3% yield was observed in the reaction mixture, and further NH₃ in 75% yield was released after base distillation. A longer reaction time improved the total yield of NH₃. The reaction also proceeded at 30 °C; however, the yield of NH₃ was lower. In the absence of 2, no NH₃ was obtained. In all the cases, only a trace amount of NH₂NH₂ was observed. The typical results were shown in Table 1. The ¹H and ³¹P NMR spectra of the reaction mixture showed the complete conversion of the N2 complex and liberation of free PMe₂Ph from the W atom; however, neither tungsten products nor iridium products could be characterized. Because plausible hydrazido(2-) intermediate complexes, which might provide NH₃ by base treatment, were not detected by the NMR and IR spectra of the reaction mixture, we consider that protonation of the coordinated N₂ did not stop at the stage of the hydradizo(2-) form, but proceeded further to form NH_3 and NH_4^+ . Thus, base distillation of the reaction mixture was carried out to liberate NH_3 . Actually, when the reaction mixture of 1 and 10 equiv of 2 at 55 °C for 24 h was extracted with an excess of water instead of base distillation, the presence of NH₃ in 50% vield based on the W atom was observed in the water extract. As expected, treatment of 1 with 10 equiv of thiophenol (PhSH) or an excess of H₂S under the same reaction conditions led to evolution of H₂ gas without the formation of NH₃,¹¹ whereas in the case of a more acidic thiol (p-CF₃C₆F₄SH), NH₃ was obtained in a low yield (9% total yield).

In contrast to the above iridium complex, the corresponding rhodium complex, $[Cp^*Rh(\mu-SH)_3RhCp^*]Cl^{10c}$ (3), afforded a small amount of NH₃ (7% total yield) under the same reaction conditions. Furthermore, the iron complex $[P_3Fe(\mu-SH)_3FeP_3]$ -

⁽⁹⁾ Nishibayashi, Y.; Iwai, S.; Hidai, M. Science 1998, 279, 540-542.
(10) (a) Hashizume, K.; Mizobe, Y.; Hidai, M. Organometallics 1996, 15, 3303-3309.
(b) Tang, Z.; Nomura, Y.; Ishii, Y.; Mizobe, Y.; Hidai, M. Organometallics 1997, 16, 151-154.
(c) Tang, Z.; Nomura, Y.; Ishii, Y.; Mizobe, Y.; Hidai, M. Inorg. Chim. Acta 1998, 267, 73-79.
(d) Tang, Z.; Nomura, Y.; Mizobe, Y.; Hidai, M. Inorg. Chem. in press.

⁽¹¹⁾ An excess of methanol (pK_a 15.5) reacts with **1** at 50 °C to form NH₃ in good yield.²⁰ Both PhSH (pK_a 6.6) and H₂S (pK_a 7.0) are assumed to have enough acidity to protonate the coordinated N₂ in the complex **7**; however, protonation did not occur.

 Table 1.
 Protonation of Coordinated Dinitrogen on Tungsten with Sulfido-Bridged Dinuclear Complexes to Produce Ammonia^a

com-	temp	time	yield of NH ₃ (%) ^b			com-	temp	time	yield of NH ₃ (%) ^b		
plex	(°C)	(h)	free ^c	basic ^d	total	plex	(°C)	(h)	free ^c	basic ^d	total
2	55	24	3	75	78	3	55	24	3	4	7
2	55	60	0	91	91	4	55	24	2	36	38
2	30	24	2	26	28	5	55	24	0	6	6
2	55	24			50^e	6	55	24	2	7	9

^{*a*} All of the reactions were carried out in dichloroethane-benzene using 0.10 mmol of **1** and 1.00 mmol of complex. ^{*b*} Yield of NH₃ was based on the W atom. ^{*c*} Free yield was before base distillation of the reaction mixture. ^{*d*} Basic yield was after base distillation to fully liberate NH₃. ^{*e*} This yield of NH₃ was observed in the water extract of the reaction mixture (see text).

Scheme 2

BF₄¹² (4; P₃ = bis(2-diphenylphosphinoethyl)phenylphosphine) was employed as a closer model component of nitrogenase because μ -SH moieties bound to *the iron atoms* in nitrogenase are considered to mediate proton transfer to coordinated N₂ (*vide supra*). In this reaction, NH₃ was formed in 38% total yield. However, metal products could not be characterized. In the present model reactions, we consider that proton was transferred through the intermolecular interaction between the μ -SH ligand in the dinuclear complexes and the coordinated N₂ on W atom (*vide infra*).

On the other hand, the neutral hydrosulfido-bridged diiridium complex, $[Cp*IrCl(\mu-SH)_2IrClCp*]^{10b,c}$ (5), afforded NH₃ in a lower yield than the above cationic hydrosulfido-bridged complex 2.¹³ This shows that the μ -SH ligand in the cationic complex is more acidic than that in the neutral complex. A heterodinuclear complex, $[Cp*RuCl(\mu-SH)_2TiCp_2]^{14}$ (6), also gave a low yield of NH₃.

The reaction of *trans*- $[W(N_2)_2(dppe)_2]$ (7) with 2 equiv of 2 or 4 under a nitrogen atmosphere in dichloroethane-benzene at 55 °C for 24 h gave the hydradizo(2-) complexes trans-[WCl(NNH2)- $(dppe)_2$]Cl (8) and trans-[WF(NNH₂)(dppe)₂]BF₄ (9) in 60% and 80% NMR yields, respectively (Scheme 2).¹⁵ The same hydrazido(2-) complexes were previously obtained from 7 by protonation with HCl or HBF4.5a,6a Furthermore, the direct transfer of a proton from the μ -SH ligand in the dinuclear complex 4 to the coordinated N_2 in complex 1 was *preliminarily* confirmed by the experiment using the deuterated hydrosulfido complex [P₃- $Fe(\mu-SD)_3FeP_3]BF_4$ (4'); the deuterated hydrazido(2-) complex $[WF(NND_2)(dppe)_2]^+ 9' (v_{ND} = 2399 \text{ cm}^{-1})$ and nondeuterated hydrazido(2-) complex 9 were obtained in 35 and 45% NMR yield, respectively, under the same reaction conditions.¹⁶ These results provide direct evidence for protonation of the coordinated N_2 with the μ -SH ligand in these dinuclear complexes. Thus, the formation of NH_3 by the reaction of 1 with the above

(13) The ¹H NMR spectrum of the reaction mixture showed the formation of the cubane cluster [(Cp*Ir)₄(μ -S)₄], which was previously obtained by the reaction of **5** and Et₃N.^{10b,c}

(14) Kuwata, S.; Hidai, M. Chem. Lett. 1998, 885-886.

 Table 2.
 Protonation of Coordinated Dinitrogen on Tungsten with

 Sulfido-Bridged Dinuclear Complexes to Produce Acetone Azine^a

complex	temp (°C)	time (h)	acetone azine (%) ^b	complex	temp (°C)	time (h)	acetone azine (%) ^b
2	55	24	48	4	55	48	95
2	55	48	74	5	55	24	14
2	30	48	67	6	55	24	15
3	55	24	8	10	55	24	15

^{*a*} All of the reactions were carried out in acetone–benzene using 0.10 mmol of **1** and 1.00 mmol of complex. ^{*b*} Yield of acetone azine was based on the W atom.

hydrosulfido-bridged complexes is also considered to proceed through hydrazido(2-) intermediates. These findings indicate that the μ -SH ligand¹⁷ especially in the cationic dinuclear complexes is able to protonate the coordinated N₂ on W atom, in sharp contrast to RSH and H₂S.

Interestingly, treatment of **1** in the presence of acetone with 10 equiv of 2 under nitrogen atmosphere in benzene at 55 °C for 24 h afforded acetone azine in 48% yield based on the W atom (Scheme 3). The typical results were shown in Table 2. In contrast to the formation of NH₃, 4 produced acetone azine in a yield higher than 2. Other hydrosulfido-bridged dinuclear complexes such as 5, 6, and $[Cp*RuCl(\mu-SH)_2RuClCp*]^{10a}$ (10) afforded acetone azine in 14-15% yield under the same conditions. In the absence of the hydrosulfido-bridged dinuclear complexes, no acetone azine was formed. On the other hand, employment of dirhodium sulfido-bridged complexes such as [Cp*RhCl(µ-SH)₂RhClCp*],^{10b} [(PPh₃)₂RhHCl(µ-SH)₂RhHCl-(PPh₃)₂],¹⁸ and [(triphos)RhH(µ-SH)₂RhH(triphos)](PF₆)₂¹⁹ (triphos = 1, 1, 1-tris(diphenylphosphinomethyl)ethane) did not give rise to the formation of acetone azine. The formation of acetone azine in these reactions is considered to proceed through diazoalkane intermediates containing the W=N-N=CMe₂ moiety, which is formed by the condensation of a hydrazido(2-) intermediate with acetone. The mechanism is essentially the same as that proposed previously for the reaction of 1 with a methanol/acetone mixture.²⁰

In summary, we have found that coordinated N₂ on the W atom can be protonated with the μ -SH ligand in dinuclear complexes to produce NH₃ and acetone azine under mild conditions. The cationic μ -SH dinuclear complexes **2** and **4** are the most effective for protonation of coordinated N₂. To our knowledge, this is the first example of proton transfer from metal SH complexes to coordinated N₂. Whether such proton transfer occurs in nitrogenase is still completely open to conjecture; however, this type of model system will provide valuable information about the mechanism of biological nitrogen fixation by nitrogenase.

Acknowledgment. This work was supported by a Grant-in-Aid for Specially Promoted Research (09102004) from the Ministry of Education, Science, Sports, and Culture of Japan.

JA981223G

⁽¹²⁾ Vaira, M. D.; Midollini, S.; Sacconi, L. Inorg. Chem. 1979, 18, 3466–3469.

⁽¹⁵⁾ The anion (chloride or fluoride) in the hydradizo(2-) complexes 8 and 9 came from the counteranion of the hydrosulfido complexes 2 and 4.

⁽¹⁶⁾ The relatively low yield of 9' is considered to be due to the reaction of 7 with the nondeuterated hydrosulfido complex 4, which was probably formed by the reaction of the deuterated hydrosulfido complex 4' with adventitious water in the solvent.

⁽¹⁷⁾ Since the μ -SH dinuclear complexes (2–6) are readily deprotonated by Et₃N, the pK_a values of these complexes are estimated to be far below the pK_a of Et₃NH⁺ (10.8).

⁽¹⁸⁾ Mueting, A. M.; Boyle, P.; Pignolet, L. H. Inorg. Chem. 1984, 23, 44-48.

^{(19) (}a) Bianchini, C.; Mealli, C.; Meli, A.; Sabat, M. *Inorg. Chem.* **1986**, 25, 4617–4618. (b) Bianchini, C.; Meli, A. *Inorg. Chem.* **1987**, 26, 4268–4271.

⁽²⁰⁾ Wakatabe, A.; Takahashi, T.; Jin, D.-M.; Yokotake, I.; Uchida, Y.; Hidai, M. J. Organomet. Chem. **1983**, 254, 75–82.